doi: 10.17586/2226-1494-2023-23-3-483-492


Researching carbon dioxide hydrates in thin films via FTIR spectroscopy
at temperatures of 11–180 K

O. Y. Golikov, D. Yerezhep, D. Y. Sokolov


Read the full article  ';
Article in Russian

For citation:
Golikov O.Yu., Yerezhep D.E., Sokolov D.Yu. Researching carbon dioxide hydrates in thin films via FTIR spectroscopy at temperatures of 11–180 K. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no. 3, pp. 483–492 (in Russian). doi: 10.17586/2226-1494-2023-23-3-483-492


Abstract
The IR spectra of thin films of a mixture of carbon dioxide and water were obtained using the physical vapor deposition method. They were researched in the temperature range of 11–180 K. Based on the results of the research; the formation of hydrates and clathrates was investigated. Several methods were used in the course of this research. These methods are mass spectroscopy, IR spectroscopy, and optical analysis of the thin films formed. Not only the molecular composition but also the state of the structure of molecular mixtures can be determined via Fourier transform infrared spectroscopy (FTIR). Additional data were needed to confirm the emergence of certain structures of carbon dioxide and water mixtures. The mass spectroscopy method and interference pattern analysis were utilized to obtain that data. Hydrate and gas hydrate structures of CO2 do form in the mixture of carbon dioxide and water. This was confirmed in the course of the experiments. The CO2 molecules are contained in their structures by the hydrate compounds formed, which prevents CO2 from sublimating at the sublimation temperature of free CO2 (93 K) under the pressure of = 0.5 μTorr. Meanwhile, the sublimation temperature of CO2 molecules bound in hydrate structures becomes equal to 147–150 K. The ratio of CO2 and H2O concentrations was chosen to be 25 % and 75 %, respectively. For this ratio, the changes in the spectra and the results obtained via mass spectroscopy indicate incomplete hydration of the mixture. Still, some CO2 molecules remain free and sublimate at a lower temperature. It was found that the concurrent increase in the refractive index and decrease in the concentration of H2O from 100 % to 25 % indicate the growth of the formations that are less dense compared with the amorphous structures of CO2 and H2O condensates. The results obtained in the course of this research broaden the knowledge of the processes of clathrate and hydrate formation in mixtures of CO2 and H2O, the physical characteristics of their structures, and the changes in their characteristics depending on the way they are formed

Keywords: FTIR spectroscopy, physical vapor deposition method, hydrates, clathrates, condensed state, thin films

References
  1. Smith S.J., Wigley M.L. Global warming potentials: 1. Climatic implications of emissions reductions. Climatic Change, 2000, vol. 44, no. 4, pp. 445–457. https://doi.org/10.1023/A:1005584914078
  2. Pierrehumbert R.T. Short-lived climate pollution. Annual Review of Earth and Planetary Sciences, 2014, vol. 42, no. 1, pp. 341–379. https://doi.org/10.1146/annurev-earth-060313-054843
  3. Edwards M.R., McNerney J., Trancik J.E. Testing emissions equivalency metrics against climate policy goals. Environmental Science & Policy, 2016, vol. 66, pp. 191–198. https://doi.org/10.1016/j.envsci.2016.08.013
  4. Schrag D.P. Storage of carbon dioxide in offshore sediments. Science, 2009, vol. 325, no. 5948, pp. 1658–1659. https://doi.org/10.1126/science.1175750
  5. Kvenvolden K.A. Gas hydrates-geological perspective and global change. Reviews of Geophysics, 1993, vol. 31, no. 2, pp. 173–187. https://doi.org/10.1029/93rg00268
  6. Konno Y., Fujii T., Sato A., Akamine K., Naiki M., Masuda Y., Yamamoto K., Nagao J. Key findings of the world’s first offshore methane hydrate production test off the coast of Japan: Toward future commercial production. Energy & Fuels, 2017, vol. 31, no. 3, pp. 2607–2616. https://doi.org/10.1021/acs.energyfuels.6b03143
  7. Li J., Ye J., Qin X., Qiu H., Wu N., Lu H., Xie W., Lu J., Peng F., Xu Z., Lu C., Kuang Z., Wei J., Liang Q., Lu H., Kou B. The first offshore natural gas hydrate production test in South China Sea. China Geology, 2018, vol. 1, no. 1, pp. 5–16. https://doi.org/10.31035/cg2018003
  8. Sloan Jr. E.D., Koh C.A., Koh C.A. Clathrate Hydrates of Natural Gases. CRC Press, 2007. 752 p. https://doi.org/10.1201/9781420008494
  9. Ricaurte M., Dicharry Ch., Renaud X., Torré J.-Ph. Combination of surfactants and organic compounds for boosting CO2 separation from natural gas by clathrate hydrate formation. Fuel, 2014, vol. 122, pp. 206–217. https://doi.org/10.1016/j.fuel.2014.01.025
  10. Tomita S., Akatsu S., Ohmura R. Experiments and thermodynamic simulations for continuous separation of CO2 from CH4 + CO2 gas mixture utilizing hydrate formation. Applied Energy, 2015, vol. 146, pp. 104–110. https://doi.org/10.1016/j.apenergy.2015.01.088
  11. Mimachi H., Takahashi M., Takeya S., Gotoh Y., Yoneyama A., Hyodo K., Takeda T., Murayama T. Effect of long-term storage and thermal history on the gas content of natural gas hydrate pellets under ambient pressure. Energy & Fuels, 2015, vol. 29, no. 8, pp. 4827–4834. https://doi.org/10.1021/acs.energyfuels.5b00832
  12. Malla B.K., Vishwakarma G., Chowdhury S., Selvarajan P., Pradeep T. Formation of ethane clathrate hydrate in ultrahigh vacuum by thermal annealing. Journal of Physical Chemistry C, 2022, vol. 126, no. 42, pp. 17983–17989. https://doi.org/10.1021/acs.jpcc.2c06264
  13. Li M., Li K., Yang L., Su Y., Zhao J., Song Y. Evidence of guest–guest interaction in clathrates based on in situ Raman spectroscopy and density functional theory. Journal of Physical Chemistry Letters, 2022, vol. 13, no. 1, pp. 400–405. https://doi.org/10.1021/acs.jpclett.1c03857
  14. Koide H., Takahashi M., Tsukamoto H., Shindo Y. Self-trapping mechanisms of carbon dioxide in the aquifer disposal. Energy Conversion and Management, 1995, vol. 36, no. 6–9, pp. 505–508. https://doi.org/10.1016/0196-8904(95)00054-h
  15. Tohidi B., Yang J., Salehabadi M., Anderson R., Chapoy A. CO2 hydrates could provide secondary safety factor in subsurface sequestration of CO2. Environmental Science & Technology, 2010, vol. 44, no. 4, pp. 1509–1514. https://doi.org/10.1021/es902450j
  16. Zheng J., Chong Z.R., Qureshi M.F., Linga P. Carbon dioxide sequestration via gas hydrates: a potential pathway toward decarbonization. Energy & Fuels, 2020, vol. 34, no. 9, pp. 10529–10546. https://doi.org/10.1021/acs.energyfuels.0c02309
  17. Qureshi M.F., Dhamu V., Usadi A., Barckholtz T.A., Mhadeshwar A.B., Linga P. CO2 Hydrate formation kinetics and morphology observations using high-pressure liquid CO2 applicable to sequestration. Energy & Fuels, 2022, vol. 36, no. 18, pp. 10627–10641. https://doi.org/10.1021/acs.energyfuels.1c03840
  18. Takahashi T., Sato T. Inclusive environmental impact assessment indices with consideration of public acceptance: Application to power generation technologies in Japan. Applied Energy, 2015, vol. 144, pp. 64–72. https://doi.org/10.1016/j.apenergy.2015.01.053
  19. Englezos P., Kalogerakis N., Dholabhai P.D., Bishnoi P.R. Kinetics of formation of methane and ethane gas hydrates. Chemical Engineering Science, 1987, vol. 42, no. 11, pp. 2647–2658. https://doi.org/10.1016/0009-2509(87)87015-x
  20. Ribeiro C.P., Lage P.L.C. Gas-liquid direct-contact evaporation: A review. Chemical Engineering & Technology, 2005, vol. 28, no. 10, pp. 1081–1107. https://doi.org/10.1002/ceat.200500169
  21. Linga P., Kumar R., Englezos P. Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures. Chemical Engineering Science, 2007, vol. 62, no. 16, pp. 4268–4276. https://doi.org/10.1016/j.ces.2007.04.033
  22. Cai J., Zhang Y., Xu C.-G., Xia Z.-M., Chen Z.-Y., Li X.-S. Raman spectroscopic studies on carbon dioxide separation from fuel gas via clathrate hydrate in the presence of tetrahydrofuran. Applied Energy, 2018, vol. 214, pp. 92–102. https://doi.org/10.1016/j.apenergy.2018.01.055
  23. Li X.-S., Xu C.-G., Chen Z.-Y., Wu H.-J. Hydrate-based pre-combustion carbon dioxide capture process in the system with tetra-n-butyl ammonium bromide solution in the presence of cyclopentane. Energy, 2011, vol. 36, no. 3, pp. 1394–1403. https://doi.org/10.1016/j.energy.2011.01.034
  24. Liu H., Wang J., Chen G., Liu B., Dandekar A., Wang B., Zhang X., Sun C., Ma Q. High-efficiency separation of a CO2/H2 mixture via hydrate formation in W/O emulsions in the presence of cyclopentane and TBAB. International Journal of Hydrogen Energy, 2014, vol. 39, no. 15, pp. 7910–7918. https://doi.org/10.1016/j.ijhydene.2014.03.094
  25. Kumar R., Wu H., Englezos P. Incipient hydrate phase equilibrium for gas mixtures containing hydrogen, carbon dioxide and propane. Fluid Phase Equilibria, 2006, vol. 244, no. 2, pp. 167–171. https://doi.org/10.1016/j.fluid.2006.04.008
  26. Wang X., Zhang F., Lipiński W. Research progress and challenges in hydrate-based carbon dioxide capture applications. Applied Energy, 2020, vol. 269, pp. 114928. https://doi.org/10.1016/j.apenergy.2020.114928
  27. Uchida T. Physical property measurements on CO2 clathrate hydrates. Review of crystallography, hydration number, and mechanical properties. Waste Management, 1998, vol. 17, no. 5–6, pp. 343–352. https://doi.org/10.1016/s0956-053x(97)10047-2
  28. Lee Y.-J., Han K.W., Jang J.S., Jeon T.-I., Park J., Kawamura T., Yamamoto Y., Sugahara T., Vogt T., Lee J.-W., Lee Y., Yoon J.-H. Selective CO2 trapping in guest-free hydroquinone clathrate prepared by gas-phase synthesis. ChemPhysChem, 2011, vol. 12, no. 6, pp. 1056–1059. https://doi.org/10.1002/cphc.201001047
  29. Arismendi-Arrieta D.J., Valdés Á., Prosmiti R. A systematic protocol for benchmarking guest-host interactions by first-principles computations: capturing CO2 in clathrate hydrates. Chemistry - A European Journal, 2018, vol. 24, no. 37, pp. 9353–9363. https://doi.org/10.1002/chem.201800497
  30. Aldiyarov A., Aryutkina M., Drobyshev A., Kurnosov V. IR spectroscopy of ethanol in nitrogen cryomatrices with different concentration ratios. Low Temperature Physics, 2011, vol. 37, no. 6, pp. 524–531. https://doi.org/10.1063/1.3622633
  31. Sanz-Hervás A., Iborra E., Clement M., Sangrador J., Aguilar M. Influence of crystal properties on the absorption IR spectra of polycrystalline AlN thin films. Diamond and Related Materials, 2003, vol. 12, no. 3–7, pp. 1186–1189. https://doi.org/10.1016/s0925-9635(02)00228-5
  32. Karamancheva I., Stefov V., Šoptrajanov B., Danev G., Spasova E., Assa J. FTIR spectroscopy and FTIR microscopy of vacuum-evaporated polyimide thin films. Vibrational Spectroscopy, 1999, vol. 19, no. 2, pp. 369–374. https://doi.org/10.1016/s0924-2031(99)00011-9
  33. Oancea A., Grasset O., Le Menn E., Bollengier O., Bezacier L., Le Mouélic S., Tobie G. Laboratory infrared reflection spectrum of carbon dioxide clathrate hydrates for astrophysical remote sensing applications. Icarus, 2012, vol. 221, no. 2, pp. 900–910. https://doi.org/10.1016/j.icarus.2012.09.020
  34. Myshakin E.M., Saidi W.A., Romanov V.N., Cygan R.T., Jordan K.D. Molecular dynamics simulations of carbon dioxide intercalation in hydrated na-montmorillonite. Journal of Physical Chemistry C, 2013, vol. 117, no. 21, pp. 11028–11039. https://doi.org/10.1021/jp312589s
  35. Valdés Á., Arismendi-Arrieta D.J., Prosmiti R. Quantum dynamics of carbon dioxide encapsulated in the cages of the si clathrate hydrate: Structural guest distributions and cage occupation. Journal of Physical Chemistry C, 2015, vol. 119, no. 8, pp. 3945–3956. https://doi.org/10.1021/jp5123745
  36. Tylinski M., Chua Y.Z., Beasley M.S., Schick C., Ediger M.D. Vapor-deposited alcohol glasses reveal a wide range of kinetic stability. Journal of Chemical Physics, 2016, vol. 145, no. 17, pp. 174506. https://doi.org/10.1063/1.4966582
  37. Shinbayeva A., Drobyshev A., Drobyshev N. The standardization and certification procedures of cryogenic equipment in Kazakhstan. Low Temperature Physics, 2015, vol. 41, no. 7, pp. 571–573. https://doi.org/10.1063/1.4927050
  38. Aldiyarov A., Nurmukan A., Sokolov D., Korshikov E. Investigation of vapor cryodeposited glasses and glass transition of tetrachloromethane films. Applied Surface Science, 2020, vol. 507, pp. 144857. https://doi.org/10.1016/j.apsusc.2019.144857
  39. Drobyshev A., Aldiyarov A., Nurmukan A., Sokolov D., Shinbayeva A. Structure transformations in thin films of CF3-CFH2 cryodeposites. Is there a glass transition and what is the value of Tg? Applied Surface Science, 2018, vol. 446, pp. 196–200. https://doi.org/10.1016/j.apsusc.2018.01.270
  40. Drobyshev A., Aldiyarov A., Sokolov D., Shinbayeva A. Refractive indices and density of cryovacuum-deposited thin films of methane in the vicinity of the α-β-transition temperature. Low Temperature Physics, 2017, vol. 43, no. 6, pp. 724–727. https://doi.org/10.1063/1.4985981
  41. Aldiyarov A.U., Sokolov D.Y., Nurmukan A.Y., Ramos M.A. Refractive index at low temperature of tetrachloromethane and tetrafluoroethane cryovacuum condensates. ACS Omega, 2020, vol. 5, no. 20, pp. 11671–11676. https://doi.org/10.1021/acsomega.0c00969
  42. Sokolov D.Y., Yerezhep D., Vorobyova O., Ramos M.A., Shinbayeva A. Optical studies of thin films of cryocondensed mixtures of water and admixture of nitrogen and argon. Materials (Basel), 2022, vol. 15, no. 21, pp. 7441. https://doi.org/10.3390/ma15217441
  43. Sokolov D.Y., Yerezhep D., Vorobyova O., Golikov O., Aldiyarov A.U. Infrared analysis and effect of nitrogen and nitrous oxide on the glass transition of methanol cryofilms. ACS Omega, 2022, vol. 7, no. 50, pp. 46402–46410. https://doi.org/10.1021/acsomega.2c05090
  44. Golikov O.Y., Yerezhep D., Sokolov D.Y. Improvement of the automatic temperature stabilisation process in the cryovacuum unit. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no. 1, pp. 62–67. https://doi.org/10.17586/2226-1494-2023-23-1-62-67
  45. Tempelmeyer K.E., Mills D.W. Refractive index of carbon dioxide cryodeposit. Journal of Applied Physics, 1968, vol. 39, no. 6, pp. 2968–2969. https://doi.org/10.1063/1.1656707
  46. Dartois E., Schmitt B. Carbon dioxide clathrate hydrate FTIR spectrum. Astronomy & Astrophysics, 2009, vol. 504, no. 3, pp. 869–873. https://doi.org/10.1051/0004-6361/200911812
  47. Rothman L.S., Young L.D.G. Infrared energy levels and intensities of carbon dioxide—II. Journal of Quantitative Spectroscopy and Radiative Transfer, 1981, vol. 25, no. 6, pp. 505–524. https://doi.org/10.1016/0022-4073(81)90026-1
  48. Bernstein M., Cruikshank D., Sandford S. Near-infrared laboratory spectra of solid H2O/CO2 and CH3OH/CO2 ice mixtures.Icarus, 2005, vol. 179, no. 2, pp. 527–534. https://doi.org/10.1016/j.icarus.2005.07.009
  49. Sandford S.A., Allamandola L.J. The physical and infrared spectral properties of CO2 in astrophysical ice analogs. Astrophysical Journal, 1990, vol. 355, pp. 357. https://doi.org/10.1086/168770
  50. Bryson C.E., Cazcarra V., Levenson L.L. Sublimation rates and vapor pressures of water, carbon dioxide, nitrous oxide, and xenon. Journal of Chemical & Engineering Data, 1974, vol. 19, no. 2, pp. 107–110. https://doi.org/10.1021/je60061a021


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика